
Application Note:QCI-AN048 QuickSilver Controls, Inc.
Date: 4 March 2009 www.QuickSilverControls.com

Property of QuickSilver Controls, Inc. Page 1 of 14 This document is subject to change without notice.

QuickControl® is a registered trademark of QuickSilver Controls, Inc.
Other trade names cited are property of their explicit owner.

Register Files
Related Documents:
Register Load and Store Example.qcp
Reg File Adv Example.txt
Reg File Adv Example - Include 2.txt
Reg File Adv Example - Include 3.txt
Reg File Adv Example - Include.csv
Reg File Adv Example.qcp

The document details the use of SilverLode's Register Files System. This is an advanced
topic. For general background please see the SilverLode User Manual.

Overview
Register data can be stored to and loaded from Non-Volatile Memory (NVM) using the
following command

NVM Commands

• Register Store Non-Volatile (RSN) – Store data from one register

• Register Store Multiple (RSM) – Store data from multiple registers

• Register Load Non-Volatile (RLN) - Load data from NVM to one register

• Register Load Multiple (RLM) - Load data from NVM to multiple registers

The following example shows RSN being used to store register 30 having a value of “1234” to
NVM. RLN is then used to load register 35 from non-volatile memory. At the end of the
program, register 35 equals “1234”.

Program

R30=1234
R35=0

RSN R30

RLN R35

NVM

1234
1234

1234

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 2 of 14

NVM Access
The NVM Commands must specify a Location (address) in NVM where the data is stored. The
NVM Location can be specified by either the user (Native Mode) or by QuickControl (Normal
Mode).

Native Mode
The example to the right shows the RSM command in
Native Mode where the NVM Location is set to 1000 and
registers 30 and 31 are being stored. In Native Mode,
the user is responsible for keeping track of where data is
being stored and making sure data does not overlap
other data or programs.

Normal Mode
In Normal Mode, QuickControl automatically determines
the NVM Location for all the NVM Commands at
download time using the register files.

Register Files
A register file is a QuickControl object named by the user, which allows the user to specify the
number of registers to store and their initial data.

Register files allow NVM Commands to refer to a register file instead of an explicit NVM
Location. At download time, QuickControl automatically determines the best place in NVM to
store the register data and copies these NVM Locations to the appropriate NVM Commands
embedded in the user program.

Create a Register File
Register files are created from the menu Programs->Register
Files.

The Non-Volatile Register File System dialog box displays a
list of all register files. For a new program this list is blank.

To add a new
Register File, press
“Add Register File”.

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 3 of 14

Enter a unique name for the file and the number of
registers to store. In the example to the right, "My Reg
File" contains 2 registers.

The rest of the dialog box will be described latter.

Press OK.

Your newly created
register file will now
appear on the list.

Press OK.

Using A Register File
With the register file “My Reg File” defined, the NVM
Commands can now be used in Normal Mode without
having to specify a NVM Location.

Let us use the RSM command with our new register file.
The RSM command shown here uses the register file “My
Reg File” to store registers 20 and 21 to NVM. Notice with
Normal Mode selected, the NVM Location and Number of
Registers controls are disabled. Remember, "My Reg
File" contains this information so it does not need to be
entered here by the user.

In this dialog box, the user can change which registers are stored and choose different register
files.

For use of Indirect Addressing, see Application Note “QCI-AN046 Indirect Addressing”.

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 4 of 14

Register Load and Store Example.qcp
This example program demonstrates storing and
loading data from a single register. The program loads
register 10 from NVM, increments it, and then stores
the data. If the Register Watch tool is used to monitor
register Accumulator [10], you will note that it starts

with a value of 10 and then increments every time
power is cycled.

The register file “Accumulator Storage” properties can
be edited by:
1) Double clicking on the RLN command.

2) Press “Edit Register File”

Note “Number of
Registers” is 1.

Why does register 10 start with a value of 10? See
below.

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 5 of 14

Edit Register File Details
From the above example, the register file "Accumulator
Storage" is shown on the right.

Register File Name
Name of register file. Must be unique within this
Program File (QCP).

Number of Registers
Number of registers to store or load. Max 10.

Memory Mode
When Auto Memory Mode is selected (default),
QuickControl assigns the register file’s NVM Location during program download. Manual
Memory Mode allows the user to specify the register file’s NVM Location.

Non-Volatile Memory Location
The register file will be store at this location. Note, in
Auto mode this is field is disabled.

Edit Initialization Data
At download time, QuickControl initializes the data at
the register file’s NVM Location to the value entered
into the Edit Register File Initial Data dialog box. In the
above example, press "Edit Initialization Data" to get the
dialog box on the right. Note the Initial Data is 10. This
is why the example program always resets to 10 when
the program is downloaded.

Double click on the Units cell to change the units.

Register File Array
A Register File Array is simply a collection of register files. Each entry (row) into the array is
actually a register file. The number of registers (columns) for each row of the array must be
the same. Register File Array creation is described below. Use of Register File Arrays is
detailed in Application Note “QCI-AN046 Indirect Addressing”.

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 6 of 14

Import Register Files From Text File
Register files can be defined as detailed above or in a
specially formatted text file (defined below). This “Import Text
File” must be "linked" to the program file (qcp file) and saved
in the same folder. The following procedure describes the
linking of the Import Text File to a QCP:

From the Programs menu, click on register files to get the
Non-Volatile Register File System dialog box as shown.

Press “Import Register Files and Arrays From Text File”.

You have the option of either doing a one time import
or linking the Import Text file. Linking makes
QuickControl import the text file each time the QCP is
downloaded.

Note, the Import Text File needs to be in the same
folder as the QCP.

Check “Delete existing….” to delete any previously
imported Register File Arrays before importing the file.
By default, importing will overwrite any objects with the
same name, but will not delete any register files that
are no longer defined in the text file.

NOTE: If the text file will import any data associated with units (see Data Format Directive), the
QCP must have the appropriate scaling set and saved BEFORE the text file is linked.

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 7 of 14

Import Text File Format

Overview
"Reg File Adv Example.qcp" associated text files are a good example of Import Text Files.

An integral feature of the Register File System is its ability to dynamically link text files
containing data to a QCP file that uses the data. These text files must reside in the same
Windows folder as the QCP file that calls upon them. In addition, the text files must be
formatted in such a way that allows QuickControl to read the data and reallocate it to non-
volatile memory. This is achieved through Import Directives.

Comments
Any line preceded with a semi-colon is considered a comment and is ignored.
Example:
; Comment

Directives
The following formats are used to specify the Register File Import Directives.

File Include(@Include)
An @Include may be placed anywhere in the file and incorporates the listed file name as if it
were part of this file.

Example: @Include: Position Data File.txt

Register File Import Directive @NVRegFile:
This directive informs QuickControl that a register file is to be imported.

Example: @NVRegFile: startAdr=2500,col0Fmt=time
There are two optional directives that may appear with the Register File Import directive,
Starting Address and Data Format. If these directives are used, they need to be on the same
line as the Register File Import Directive and must be separated by commas.

Starting Address Directive startAdr=
This directive specifies the non-volatile memory address of the register file. The starting
address may be in decimal or hexadecimal form.

Example: startAdr=2500
If the starting address is not specified with this directive, the register file starting address will be
set to the default Auto memory mode. In Auto memory mode, QuickControl assigns the
register file starting address when the QCP is downloaded.

Data Format Directive colXFmt=
This directive specifies the format of imported data. When using this directive ensure that
proper scaling is defined in the QCP file and saved BEFORE linking the text file to the QCP.
The following data formats are accepted:

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 8 of 14

• long (imports data as a 32 bit signed value)

• hex (imports data as a hexadecimal value)

• uLong (imports data as a 32 bit unsigned value)

• pos (scales value and imports with position units set in QuickControl Scaling)

• acc (scales value and imports with acceleration units set in QuickControl Scaling)

• vel (scales value and imports with velocity units set in QuickControl Scaling)

• time (number of servo ticks [120 usec=1 tick])

• torq (percent torque)

The data format for each data entry (column) can be different. Putting the appropriate number
in place of the X in the Data Format Directive specifies the data format of a specific data entry
(column). Note the column numbers are zero-based (i.e. 0,1,2…), so that the first column’s
column number would be 0.

Example: col0Fmt=time (the format for the first column of data is time)
This data format directive will cause the first data entry of each register file that follows to be
imported in time format. QuickControl will convert the time data to Native SilverLode Units.
The data will be stored to memory in Native SilverLode Units.

Note: If the data format for an entry (column) is not specified with a directive, it defaults to long
format.

Example: @NVRegFile: startAdr=2500,col0Fmt=time
(Using Register File Import Directive and both optional directives)
The register file data that follows this directive will be stored to non-volatile memory location
2500, and the first data entry (column) will be in time format.

Register File Details
The lines in the import text file following the Register File Directive should include details
(name, # of registers, and data) for specific register files. There can be multiple register files
imported, but the details of each register file must be contained on one line of the text file. The
register file details must be separated by commas and listed in the following format:
<reg file name>, <# of registers>, <1st reg data>, <2nd reg data>, … <last reg data>

<reg file name> = Name of importing register file. Quotation marks are optional and spaces
allowed.

<# of registers> = The number of registers to be stored in this register file. Range must be 1
to 10.

<1st reg data>, <2nd reg data>, … <last reg data> = The 32 bit data entries that are to be
stored in this register file. The number of data entries should match the number of registers for
this register file. Commas must separate the data entries.

Example: Reg File 1, 2, 100,110
This would define a register file named “Reg File 1” that has 2 registers with data 100 and 110.

Example: @NVRegFile: startAdr=2500, col0Fmt=time, col2Fmt=pos, col4Fmt=vel

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 9 of 14

Reg File 1, 2, 100, 110
Reg File 2, 6, 30,31,32,33,34,35

If an imported text file contained the above example, it would create two register files named
“Reg File 1” and “Reg File 2”. Reg File 1 would start at memory location 2500 and Reg File 2
would start at memory location 2506. After importing, non-volatile memory starting at address
2500 is be configured as follows:

Memory
Address

of words Stored Elements

2500 1 5 (length - lower byte), 78 (checksum - upper byte)

2501 1 0

2502 2 833 (time data stored in native units)

2504 2 110

2506 1 13 (length - lower byte), 199 (checksum - upper byte)

2507 1 0

2508 2 250 (time data stored in native units)

2510 2 31

2512 2 32

2514 2 33

2516 2 273804 (velocity data stored in native units)

2518 2 35

Register File Details Alternative
An alternative to the format detailed above for importing Register File Details requires putting
all of the information for the register file on the same line as the Register File Import Directive.
The Register File Import Directive (@NVRegFile:) may be followed with the optional directives
for starting address (startAdr=xxxx) and data format (colXFmt=format) as described above. In
addition, the Register File Details may be supplied on the same line, using the following
directives separated by commas.

Register File Name Directive name=
Specifies the name of the register file

Example: name=reg file 1

Number of registers Directive numRegs=
Specifies the number of registers in this register file and must be a number between 1 and 10.

Example: numRegs=4

Data Directive data=
This is an optional parameter if followed by data and must be the last directive. It specifies the
32-bit data to be stored to non-volatile memory. The data is to be enclosed in parenthesis and
separated by commas.

Example: data=(300,301,302,303)

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 10 of 14

If a data directive is not given and the number of registers is defined, QuickControl will allocate
memory for the register file, but will not save any data to memory.

Example: @NVRegFile: name=reg file 1, numRegs=3

If an imported text file contained the above example, it would create a register file named “reg
file 1”. This register file would be assigned a non-volatile memory location by QuickControl,
but that memory location would not be written to at program download.

The following examples use the above directives:

@NVRegFile: name=reg file 1, numRegs=3,startAdr=2800, col0Fmt=time,
data=(300,301,302)
If an imported text file contained the above example, it would create a register file
named “reg file 1”, which would be stored to non-volatile memory location 2800 as
follows:

Memory
Address

of
words

Stored Elements

2800 1 7 (length - lower byte), 215 (checksum -
upper byte) 2801 1 0

2803 2 2499 (time data stored in native units)

2805 2 301

2807 2 302

@NVRegFile: name=reg file 1, data=(300,301,302)
If an imported text file contained the above example, it would create a register file
named “reg file 1”, stored to a non-volatile memory location assigned by QuickControl at
program download.

Memory
Address

of words Stored Elements

x 1 7 (length - lower byte), 118 (checksum -
upper byte) x+1 1 0

x+3 2 300

x+5 2 301

x+7 2 302

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 11 of 14

Register File Array Import Directives
Import directives for Register File Arrays are very
similar to those used with register files. Shown
on the right is “Reg File Adv Example.txt”. This
example is found in the “Data Registers” folder,
within the “QCI Examples” directory and is used
with “Reg File Adv Example.qcp”. The text file
shown, illustrates the register file and Register
File Array formatting techniques.

Register File Array Import Directive

@NVRegArray:
This directive informs QuickControl that a
Register File Array is to be imported.

The following directives define the Register File
Array. They need to be on the same line as the
Register File Array Import directive and must be
separated by commas.

Register File Array Name Directive name=

Specifies the name of the Register File Array to
be imported. Quotation marks optional and
spaces allowed.

Example: name=reg file array 1

Number of Columns Directive col=
Specifies the number of columns in the Register
File Array to be imported. The number of
columns can be equated to the number of
registers in each row of the Register File Array.
Data must be between 1 and 10.

Example: col=4

This directive is optional unless using the ending
address directive.

Number of Rows Directive row=

Specifies the number of rows in the Register File
Array to be imported.

Example: row=6
This directive is optional unless using the ending
address directive.

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 12 of 14

Starting Address Directive startAdr=
This directive specifies the non-volatile memory starting address of the Register File Array.
The starting address may be in decimal or hexadecimal form.

Example: startAdr=2500

Ending Address Directive endAdr=

This directive specifies the non-volatile memory ending address of the Register File Array.
The ending address may be in decimal or hexadecimal form. QuickControl will calculate the
starting address for this Register File Array based on the given ending address. QuickControl
needs to know the number of rows and columns to find the starting address, therefore the
number of rows and columns must be specified before this directive.

Example: endAdr=3000

If neither the starting address nor the ending address is specified, the Register File Array
starting address will be set to the default Auto memory mode. In Auto memory mode,
QuickControl assigns the Register File Array starting address when the QCP is downloaded.

Data Format Directive colXFmt=

This directive specifies the format of the imported data. When using this directive, ensure that
proper scaling is defined in the QCP file and saved BEFORE linking the text file to the QCP.
The following data formats are accepted:

• long (imports data as a 32 bit signed value)

• hex (imports data as a hexadecimal value)

• uLong (imports data as a 32 bit unsigned value)

• pos (scales value and imports with position units set in QuickControl Scaling)

• acc (scales value and imports with acceleration units set in QuickControl Scaling)

• vel (scales value and imports with velocity units set in QuickControl Scaling)

• time (number of servo ticks [120 usec=1 tick])

The data format for each column can be different. Putting the appropriate number in place of
the X in the Data Format Directive specifies the data format of a specific column. Note the
column numbers are zero-based (i.e. 0,1,2…), so that the first column’s column number would
be 0.

Example: col0Fmt=time (the first column’s data format is time)
This data format directive will cause the first column of each Register File Array entry that
follows to be imported in time format. QuickControl will convert the time data to Native
SilverLode Units. The data will be stored to memory in Native SilverLode Units.

If the data format for a column is not specified with a directive, it will be set to the default long
format.

Example: @NVRegArray: name=reg file array 1, col=4, row=6, startAdr=2500, col0Fmt=time

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 13 of 14

The Register File Array data that follows this directive will be stored to non-volatile memory
location 2500, and the column will be in time format. There will be 6 entries in this array, and
each entry has 4 columns.

Register File Array Details
The lines in the imported text file following the Register File Array Import Directive should
include the 32-bit data for the Register File Array defined by the directive. The data of each
Register File Array row must be contained on one line of the text file. The data must be
separated by commas and listed in the following format:
<row 1: 1st reg data>, < row 1: 2nd reg data … < row 1: last reg data >
<row 2: 1st reg data>, < row 2: 2nd reg data … < row 2: last reg data >
…
<last row: 1st reg data>, <last row: 2nd reg data … < last row: last reg data >

If there is no Register File Array data and the rows and columns are defined, QuickControl will
define the array and allocate memory for it, but will not write to memory.

Example: @NVRegArray: name=reg file array 1, col=4, row=3, startAdr=2600, col0Fmt=time
 100,110,120,130
 200,210,220,230

300,310,320,330

If an imported text file contained the above example, it would create a Register File Array
named “reg file array 1”. The first row of this array would start at memory location 2600
followed in memory by the other rows of the array. After the import, non-volatile memory
starting with address 2600 would be configured as follows:

Memory
Address

of words Stored Elements

2600 1
9 length of reg file array 1 (first row)
84 checksum of reg file array 1(first row)

2601 1 0

2602 2 100 (time data stored in native units)

2604 2 110

2606 2 120

2608 2 130

2610 1
9 length of reg file array 1 (second row)
228 checksum of reg file array 1(second row)

2611 1 0

2612 2 200 (time data stored in native units)

2614 2 210

2616 2 220

2618 2 230

2620 1
9 length of reg file array 1 (third row)
113 checksum of reg file array 1(third row)

2621 1 0

2622 2 300 (time data stored in native units)

2624 2 310

2626 2 320

2628 2 330

Application Note:QCI-AN048 QuickSilver Controls, Inc.

QuickSilver Controls, Inc. Page 14 of 14

Register File Storage Details
The first memory address of the register file always contains the Length and Checksum of the
register file, which is automatically calculated and stored by the servo. The servo uses the
length and checksum when loading the register file to know the correct number of words to
load and to verify the accuracy of the data. The second word of the register file is a ‘0’ or ‘Null’
and is added by the servo. The Null word is a safety feature to prevent the servo from trying to
execute the data as a program. The data from the selected data registers is stored
sequentially into the third and subsequent words of the register file.

Register File Memory Usage Example (starting at address 2500)

Memory Address # of words Stored Elements

2500 1 Length (lower byte) Checksum (upper byte)

2501 1 Null Word (0)

2503 2 Data from 1st Register

2505 2 Data from 2nd Register

2507 2 Data from 3rd Register

2509 2 Data from 4th Register

2511 2 Data from 5th Register

2513 2 Data from 6th Register

2515 2 Data from 7th Register

From the example, the total memory usage is 16 words to describe data in 7 registers.

