
Application Note:QCI-AN031  QuickSilver Controls, Inc. 
Date:  12 November 2004 www.QuickSilverControls.com 
 

Property of QuickSilver Controls, Inc. Page 1 of 11 This document is subject to change without notice. 
QuickControl® is a registered trademark of QuickSilver Controls, Inc.  
Other trade names cited are property of their explicit owner. 
 

 
Interpolated Motion Control - Standalone 
Associated Files: 

• Profile Playback – Ode to Joy.qcp 
• Profile Playback – Ode to Joy.txt 
• Profile Playback - Position(t).qcp 
• Profile Playback - Position(t).txt 
• Make IMS Segment.xls. 

 
Introduction 
For many industrial camming applications, it is necessary to define a motion profile with 
velocity segments.  The Interpolated Motion feature allows users to execute interpolated 
movements by utilizing four Data Registers that cycle through Time, Position, Acceleration, 
and Velocity Data.  See Interpolated Motion Control in SilverLode User Manual for a general 
description. 
 
These registers define constant acceleration velocity segments that ramp (up or down) to a 
desired velocity or move at a constant velocity (acceleration = 0) over a period of time.  By 
streaming data through these registers, the IMS command can interpolate the points in each 
velocity segment as well as between the velocity segments to create a continuous, complex 
motion profile.   
 
The cycling of data can be accomplished either by a host that streams the data to the device 
via serial communication or by the device operating in a standalone configuration.  This 
document will focus on standalone-interpolated movement where all data resides in the QCI 
device's non-volatile memory and is spooled to the IMS command via a Register File Array 
command.  Two specific application examples are provided in this application note; one that 
details using velocity over time data (ode to joy) and another that details position over time 
data (sinusoidal motion). 
 
Velocity over Time Data – Ode to Joy Example 
The easiest and most straightforward way to understand IMS is within an application where the 
data is defined by velocity as a function of time—as in the Ode to Joy example.  In this 
application, moves of different velocities create musical notes and the duration of the note is 
defined by how long the servo maintains that velocity.  The velocity profile is defined so that it 
ramps up or down to specific velocities that coincide with the musical notes of “Ode to Joy”. 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 2 of 11  
 

Figure 1: “Ode to Joy” Velocity Profile 
 
As shown in Figure 1, each velocity segment corresponds to a musical note (C, D, E, F, or G).  
The actual velocities that correspond to musical notes are shown in Table 1.  To find the 
number of individual velocity segments (21) that must be sent to the IMS operation, the entire 
profile is parsed up into segments that ramp and play notes, and segments that ramp to zero 
velocity (for pauses). 
 

Note Velocity (cps*) Velocity (SVU*)
G 31360 252544077 
F 27960 225163660 
E 26360 212278758 
D 23480 189085935 
C 20920 168470092 

 

* cps = “counts per second” from the servo with a 4000CPR encoder 
* SVU = native SilverLode Velocity Units (see Scaling in User Manual) 

Velocity Profile

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5 6 7
Time (s)

Ve
lo

ci
ty

 (c
ps

)
G 
       F 

 
 
 E 
   D 
   C 

Table 1—Musical Scale



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 3 of 11  
 

 
Creating a Data Table for Use with IMS 
The Register File System within QuickControl revision 4.0 + permits the linking of text files that 
contain data to be used by the IMS 
command. 
 
Figure 2 shows a Register File Array 
consisting of 22 rows and 4 columns.  Each 
row specifies an IMS velocity segment.  
Each column contains one of the four IMS 
parameters.   
 

• First parameter is time (in servo 
cycle clock ticks) 

• Second is position  
• Third is acceleration  
• Fourth is the ending velocity of that 

segment.   
 
This data table will “feed” the IMS command 
one line at a time (one velocity segment at 
a time) until the entire velocity profile is 
executed. 
 
Parameters of the Data Table 
 
Time: 0 to 2,147,483,6471 
Indicating the number of time ticks (120 µsec time slices) to count down before loading the 
next set of data.  Note that the time parameter does not influence the motion profile; it acts as 
a time delay, giving the profile enough time to develop based on the acceleration and velocity 
data.  If this value is too small, the segment will end prematurely, too big, and the segment will 
run on for longer then intended.  A “0” indicates the last set of data to be transferred and tells 
the QCI device to exit the IMS operation.  In this application, the values chosen for segment 
times are indicative of note length, but their corresponding parameters (velocity and 
acceleration) are calculated from the constant acceleration kinematics equations of motion to 
make the song “Ode to Joy”. 

Time Conversion (ticks to seconds) 

Position: -2,147,483,648 to 2,147,483,647 
Unless the segment is intended to come to a halt at a given location, the position parameter is 
only used to project the direction of motion.  It should be noted that position calculations 
incorporate register wrap-around as they are summed.  For a general move, use the present 
position, plus or minus 1,073,741,824.  This value is large enough to project moves properly, 
while remaining small enough to never wrap around the register range and project movement 

sec4164.00012.3470
sec0324.00012.270

sec

sec

=×

=×

tick

tick

ticks
ticks

Figure 2: “Ode to Joy” Data Text File 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 4 of 11  
 

in the opposite direction.  If the segment should stop (decelerate to zero velocity), give the 
desired ending position of the move.  In this case, the position parameter is used to direct the 
motion profile to a specific location. 

 
Note that in Figure 2, all but two position parameters are large positive values to project each 
velocity segment out to infinity.  The 21st segment commands a decelerating stop from the last 
“D” velocity, so the final stopping position is given.  The 22nd segment has a “0” for time 
commanding an exit from IMS and indicating it is the last segment.  Since they have no effect, 
the previous position, velocity, and acceleration parameters are repeated. 
  
Acceleration: 1 to 1073741823 (Scaled from a 0 – 2000RPM/120µsec value) 
This parameter has the highest priority and defines the acceleration or deceleration used in 
reaching the ending velocity of the segment.  A “0” indicates a constant velocity segment.  
Acceleration is calculated from time using constant acceleration kinematics equations of 
motion.  See SilverLode Acceleration Units (SAU) in User Manual for scaling details. 

 
Acceleration Conversion With 4000CPR Encoder (cps/s to a SAU) 

Velocity: 0 to 2,147,483,647 (Scaled from a 0 – 4000RPM value) 
Unless the segment is the last of the profile, this should be the desired ending velocity of the 
segment.  When specifying the last segment of a profile, set velocity equal to the starting 
velocity of the segment.  Do not set it to the ending velocity of the segment (usually 0); this will 
cause the servo to undershoot the desired ending position.  See SilverLode Velocity Units 
(SVU) in User Manual for scaling details.  The musical scale (shown in Table 1) define the 
velocities used, which are given by: 

 
Velocity Conversion With 4000CPR Encoder (cps to a SVU) 

 

 
Explanation of the Data Table 
The first row of the Register File Array shows a velocity segment that ramps up to the “E” note 
velocity and projects that movement for 3470 ticks (0.4164 sec) before looking to load a new 
segment or decelerate to a stop using register 19.  Note that these parameters define the initial 
ramping and constant velocity segments, while the position specified for this segment is never 
reached.  The position parameter is intended to allow the acceleration and velocity parameters 
to define the shape of the profile while position is projected off to some unattainable position. 
 
Data in Row 1 (ramp and play “E”): 3470 2147483647 773094 212278758 
The 3470 ticks of time data are copied to register 18 just before this segment’s execution.  This 
count is decremented every servo cycle (120 µsec) until it reaches “0”.  If register 17 has been 
written to, it should contain the register reference number of the first register out of four user 
registers from which to load data.  If register 17 still has a “1” in the upper word, the IMS 

773094
4000

1800000 3865.47056 2

2

secrev
sec =××

counts
revcounts

252544077
4000

131360 32212254.7 sec
counts

rev
sec =××

counts
rev



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 5 of 11  
 

operation will use the value in register 19 to stop motion and exit IMS operation.  See the 
“Configuring the IMS Command within the QuickControl Program” section of this application 
note for a complete discussion. 
 
Velocity segments are defined in this manner throughout the song.  Note that when a double 
note is played, the two notes are not defined as a single long note, but two distinct notes with a 
quick ramp down to 0 velocity and back up again.  This is done to maintain the beat of the 
original tune.  If the double notes are profiled as a continuous note, the tune reduces to ten 
beats rather then fifteen. 
 
Data in Row 2 (ramp to zero velocity):  270 1073741824 773094 0 
This segment ramps down to zero velocity but does not stop (the position value is left at 
1073741824).  Time decrements down in register 18 as described above. 
 
Data in 21st Row (ramp to stop):  272 161000 773094 189085935 
This segment ramps down to a stop using the standard acceleration after completing the final 
“D” note.  Give a few extra ticks than calculated (270+2) to allow for any rounding errors that 
have built up over the profile.  Since the segment is commanding a stop, give the desired 
stopping position (161000) rather than 1073741824, and starting velocity (189085935) rather 
than the ending velocity (0) of the segment.  Time decrements down in register 18 as 
described above. 
 
Data in final Row: 0 161000 773094 189085935 
This segment has a “0” for time, indicating that it is the last segment of the profile and 
commands the device to exit IMS operation.  Simply repeat position, acceleration, and velocity 
parameters, as they will have no effect. 
 
Linking the Data 
Table with the 
Register File 
System 
Once the data table is 
created, it must be 
linked to the 
QuickControl program 
that uses it.  This is 
accomplished with the 
“Programs > Register 
Files” option in the main 
toolbar. 
 
 
Select “Register File 
Arrays” under Display and click on the “Import Register File Data From Text File” button.  The 
text file that is being linked to the QuickControl program must be saved to the same folder as 
the QuickControl program. 
 

Figure 3:  Register file Dialogue Windows 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 6 of 11  
 

Configuring the QuickControl Program to use the Register File System 
Once the text file is linked, the QuickControl Program 
needs to access the register file properties so that it can 
iterate through the entire array.  Three Write Register 
File (WRF) commands are needed to do this.  The first 
WRF command writes the non-volatile memory Start 
Address, where the first row of data resides, to a user 
register.  The register file system assigns the start 
address automatically upon linking to ensure that the 
entire table will fit in non-volatile memory.  The second 
WRF command writes an Address Increment to another 
register.  The register file system assigns an address 
increment based on the number of columns reported 
(col=4, see Figure 2) in the first line of the Register File 
Array.  The third WRF command writes the Number of 
Rows in the array to a third register.  Specified in the first line of the Register File Array 
(row=22, see fig. 2).  See Register File System in SilverLode™ User Manual for details. 
 
Configuring the IMS Command within the QuickControl Program  
Once three user registers contain the Start Address, Address Increment, and Number of Rows 
of the table, the IMS command has to start iterating through the data.  The IMS command uses 
seven registers in its operation.  Register [17] contains a data indicator (see Checking for Stale 
Data) in the upper word and the register reference number of the first user register that is 
loaded with segment data in the lower word.  Register [18] is used internally to hold the 
segment time countdown.  Register [19] holds a data loss deceleration value.  This value will 
only be used if there is an under-run of data to the IMS operation; the time value counted down 
in Register [18] reaches zero before a new velocity segment is loaded into the user registers.  
The four user registers are defined by the value in Register 
[17].  The first holds the time data, the second position data, 
the third acceleration data, and the fourth register holds 
velocity data.  In “Profile Playback – Ode to Joy.qcp” these 
are Registers [30] – [34]. 
 
After the operational registers are loaded with data and the 
four segment data registers are identified, they should be 
loaded with the first row of segment data from the Register 
File Array.  This is accomplished via indirect addressing and 
the Register Load Multiple (RLM) command.  With the 
“Indirect Addressing Mode” checkbox checked, the RLM 
command uses the value in the Accumulator [10] as the 
starting non-volatile memory address of the data to be 
loaded into the segment data registers.  Therefore, before 
the RLM is issued, the Start Address from the first WRF 
must be copied into the Accumulator [10].  Then the RLM is 
issued, loading registers 30-34 with time, position, acceleration, and velocity data. 
 
After the first segment is queued into the data registers, the IMS command starts execution.  
The IMS command requires two tasks running in a loop to ensure that it can iterate through the 

Figure 4:  WRF Dialogue 

Figure 5:  RLM Dialog window 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 7 of 11  
 

entire Register File Array.  This loop checks to see if the segment data just loaded has been 
used, then queues the next row of data into the same four registers.  If the next segment is not 
loaded into data registers before the previous segment ends, the IMS command uses the 
acceleration value in Register [19] to come to a stop and exits IMS operation. 
 
Checking for Stale Data 
Register [17] is an operational register for the IMS command, and contains the register 
reference number of the first register that is loaded with segment data.  Once the IMS 
operation copies the segment data, it writes a “1” to the upper word of Register [17] indicating 
the data is stale. 
 
When fresh data is loaded, Register [17] must have the register reference number rewritten in 
order to clear the upper word “0000XXXX” and once the data is stale, the IMS operation 
automatically writes a “1” to the upper word “0001XXXX” (in “Ode to Joy” XXXX is 001E, 30 in 
hex).  A single Jump on Register Equals (JRE) command back to itself when Register [17] 
indicates fresh data is present (Reg17=0000001E) can serve as a single line checking routine.  
As soon as the “1” is written to the upper word, the jump condition is no longer valid, and the 
loop moves on to the next task. 
 
Queuing the Next Row of Data 
Once the previous segment is stale, the loop needs to load (with the RLM command) the next 
row of data into the segment data registers.  To achieve this, the current Start Address must 
be added to the Increment Address; the resulting sum is the Start Address of the next row of 
data in the Register File Array.  This is the new value that must be copied into Accumulator 
[10] before the RLM command executes.  Note:  See the “CHECK” loop in Profile Playback – 
Ode to Joy.qcp for an example of this routine. 
 
This loop should iterate through the entire Register File Array with no problems.  Similar 
routines can be implemented for use with the IMS command, but care should be taken to 
ensure that they execute in a timely manner.  If the loop is trying to do too many tasks in 
between checking for stale data and loading the new data, a data under-run could occur 
causing the interpolated move to decelerate to a stop using Register [19] and exit prematurely.  
If it is necessary to repeat the profile or exit the program after the profile is finished, use the 
Calculation (CLC) command to decrement the Number of Rows register each time the loop 
executes, and use the JRE command when that register contains a “0” to jump to an exit line 
or repeat the process. 
 
Position Over Time Data – Sinusoidal Motion Example 
In this example, position vs. time data for a cosine function will be used to create a table to 
follow the cosine curve.  Figure 6 shows the original position function defined by an inverted 
cosine function shifted for positive displacement over t = 0 to t = 2π. 
 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 8 of 11  
 

Original Function

0

0.2

0.4

0.6

0.8

1

1.2

0 3.14 6.28

Time (Seconds)

Po
si

tio
n 

(R
ev

s)

 
 

Figure 6: Desired Position Profile 
 
From this data, successive derivatives should be taken to obtain velocity and acceleration data 
for the original profile.  This can be done in Excel or another spreadsheet program as shown in 
Table 2 on the next page. 
 

Pos (revs) Time (sec) dx (revs) dt (sec) Vel (rps) Acc (rps/s) 

0.5 - 0.5*cos(time) (k* π)/n 
k=0,1,2…n=25* posn-posn-1 timen-timen-1 dx/dt veln-veln-1/dt 

0 0   0 0 
0.007885285 0.1256636 0.00789 0.1257 0.06 0.99081 
0.031416786 0.2513272 0.02353 0.1257 0.19 0.967309 
0.070223397 0.3769908 0.03881 0.1257 0.31 0.928554 
0.123693115 0.5026544 0.05347 0.1257 0.43 0.875154 
0.190982694 0.628318 0.06729 0.1257 0.54 0.807953 

Table 2: Example Velocity and Acceleration Spreadsheet 
 
* Note: The value n = 25 is chosen for 50 point resolution, use larger values of n for higher 
resolution. 
 
Velocity and acceleration data can be plotted against time to verify data integrity.  Since the 
derivative of position yields velocity, and the derivative of velocity yields acceleration, these 
plots should be visually examined to verify correct velocity and acceleration calculations.  In 
this case, the choice of cosine for the original function makes visual inspection of successive 
derivatives easy. 
 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 9 of 11  
 

d/dt Original Function

-1.5

-1

-0.5

0

0.5

1

1.5

0 3.14 6.28

Time (seconds)

Ve
lo

ci
ty

 (R
PS

)

 
Figure 7: Velocity Profile 

d2x/dt2 Original Function

-1.5

-1

-0.5

0

0.5

1

1.5

0 3.14 6.28

Time (Seconds)

A
cc

el
er

at
io

n 
(R

PS
/S

)

 
Figure 8: Acceleration Profile 

 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 10 of 11  
 

 
Creating Data Segments for IMS 
Interpolated Move segments can also be computed within a spreadsheet from the actual 
position, velocity, acceleration, and time data.  Following the rules for each parameter, an IMS 
table is generated below. 
 

Interpolated Move 
Segments 

Acceleration 
(SAU) 

Velocity 
 (SVU) 

Time (ticks) Position (counts) 0-230-1:  
0-2000RPM/120usec

0-231:  
0-4000RPM 

dt/0.00012 poscurrent±1073741824 acc*3865.47056 vel*32212254.705 

1047 1073741824 1914 1010645 
1047 1073741840 1869 3015999 
1047 1073741888 1794 4973788 
1047 1073741966 1691 6853138 
1047 1073742073 1561 8624410 

 
 
 
See Make IMS Segments below for an 
explanation of the XLS file.  
 
Creating a Data Table for Use with IMS 
Just as in the “Ode to Joy” example, a data table 
can be made and linked to a QCP file.  The data 
for this application can be copied directly out of 
the spreadsheet and pasted in to the .txt file. 
 
Notice that the 50th row has a few extra ticks 
added for any rounding errors that may have built 
up and the position is set as the desired stopping 
position of the profile as described earlier.  Also, 
note that an extra row (the 51st) with a “0” for time 
has been added with repeated parameters for 
position, velocity, and acceleration.  The “0” for 
time initiates an exit from IMS operation, a very 
important step if this is the desired action. 

Figure 9: Position Data Text File  

Table 3: IMS Data Segments Defined in Spreadsheet 



Application Note:QCI-AN031 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 11 of 11  
 

Make IMS Segments 
The Make IMS Segments.xls spreadsheet example uses time data in π/25 increments (column 
B).  For a more precise approximation, use smaller fractions of π for the time interval; this will 
also require more data points.  Position is a cosine function of time (column A) and that is why 
time increments were chosen as a fraction of π.  Increase the fraction to π/50 to yield a much 
better approximation. 
 
The encoder constant (D2) only applies to scaled position data (position in counts columns 
G&H) and the final position column for the IMS segment (column N). 
 
Columns F-K use the finite difference between time and position to generate velocity (dx/dt) 
and acceleration (d2x/dt2) data.  Columns J & K are plotted against time for the velocity and 
acceleration plots respectively.  A COS function for position was chosen because successive 
derivates (velocity and acceleration) are easily identified: vel= -SIN and acc= -COS (see the 
first three plots). 
 
Note that the start and end points of actual velocity (dx/dt) and acceleration (d2x/dt2) are hi-
lighted in red.  This is to indicate that the endpoints of dx/dt can cause a spike in d2x/dt2 and in 
some instances needs to be inputted manually rather then calculated by the spreadsheet.  It 
was noticed that adjustments to these endpoints were needed to realize a more precise move 
(final position ±1 count around 0).  If the actual acceleration plot was let to begin and end on –
1 (as it should), the final position was short 30 counts or so. 
 
Once the position function and it's successive derivatives are confirmed graphically, compute 
the actual IMS data segments (cols M-P).  Click on a cell in columns M-P to see the constants 
used to scale actual position, velocity, and acceleration data into Native SilverLode Units 
based on the register range for each parameter used by IMS. 
 
A slight gain (10% or lower) is added to the acceleration and velocity data.  These gains need 
to be equal or else the ending position of the profile is negatively affected.  The gains are used 
to increase the peak position of the COS curve.  With the original calculated values, the actual 
position curve falls short of the peak value. 
 
Important Notes 
Interpolated time is in SilverLode servo clock ticks: dt/120usec and is rounded down to the 
nearest integer.  It was noted that this, along with rounding interpolated velocity and 
acceleration up, yields precise moves (most of the time stopping exactly on 0 and oscillating 
±1 count). 
 
Interpolated position is NOT the position each segment is commanded to; it is only used to 
project the move in a direction.  IMS position is defined to be: current position +1073741824 if 
actual velocity is in the positive direction or -1073741824 if actual velocity is in the negative 
direction.  See the Interpolated position graph and the "IF" statement in the cell formatting. 
 
Interpolated velocity and acceleration are scaled absolute values; they do not need a sign 
because the position parameter will be projecting the direction of the segment.  See the 
Interpolated plots and cell formatting for constants used.   


